Equilibria, Energetics & Elements

Enthalpy and Entropy

1. (a)		$1s^2 2s^2 2p^6 3s^2 3p^6$		
	(b)	S ⁻ (g)	1	
	(c)	The negative S ⁻ ion repels the electron being added	1 1	
	(d)	(i) Enthalpy of atomisation of sulphur	1	
		(ii) Second ionisation enthalpy of calcium	1	
		(iii) Second electron affinity of sulphur	1	
	(e)	Electron more strongly attracted nearer to the nucleus or attracted by Ca^+ ion	1 1	
	(f)	Correct cycle		
e.g. + 178 + 279 + 590 + 1145 - 200 + E - 3013 + 4		e.g. + 178 + 279 + 590 + 1145 - 200 + E - 3013 + 482 = 0	1	
		= 539	1	
		Allow one mark for – 539		
			[[11]
2.	(a)	ΔH_1 formation (1)		
		ΔH_2 atomisation / sublimation (of Cs <u>not</u> Cl) (1)		
		ΔH_5 electron affinity (of Cl) (1)	3	
	(b)	$-433 = 79 + 376 + 121 - 364 + \Delta H_6 (1)$		
		$\Delta H_6 = -645 (\text{kJ mol}^{-1}) (1)$	2	
		both marks for correct answer alone allow 1 mark for +645 or 645		
	(c)	Cs has larger radius / larger atom (not ion) / more shells / more orbitals / more sub-shells (1)		
		correct reference to shielding (1)		
		less powerful attraction (of nucleus) for (outer) e^{-} in Cs (1)	3	[8]

3.	(a)	(i)	diagram shows in top box $Rb^+(g) + e^- + I(g) / e^-$ must be there (1)		
			diagram shows in lower box $Rb(\underline{s}) + \frac{1}{2}I_2(\underline{s})$ (1)	2	
		(ii)	ΔH_1 = electron affinity (of iodine)/allow correct symbols		
			including I_2 , Γ , (1)		
			$\Delta H_2 = \text{lattice enthalpy / energy (of RbI)}$ (1)	2	
		(iii)	$\Delta H_1 = -(+402) - (+107) - (+85.8) + (-328) - (-609) $ (1)		
			$= -314 (kJ mol^{-1})$ (1)	2	
			give 1 mark for +313.8 or +314 assume + if no sign given significant figure penalty for 310		
			Significant figure penalty for 510		[6]
4.		(i)	A is (enthalpy change) of formation(1)		
			B is lattice enthalpy (1)	2	
		(ii)	negative sign (only if a calculation) (1)		
			883 kJ mol ⁻¹ (1)		
			(only give both marks if working and answer correct)		
			hydration / solvation enthalpies (of Li^+ and Cl^-) (1)	3	
					[5]
5.	(a)	Parti	Particles are in maximum state of order (or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)		
			(entropy is zero at 0 k by definition)		
	(b)	(Ice)	melts (or freezes or changes from solid to liquid or from liquid to solid)	1	
	(c)	Incre	ease in disorder	1	
		Seco	nd mark only given if first mark has been awarded	1	

(d)	(i)	Moles of water = $1.53/18$ (= 0.085)	1	
		Heat change per mole = $3.49/0.085 = 41.1 \text{ (kJ mol}^{-1}\text{)}$ (allow 41 to 41.1, two sig. figs.)	1	
		(penalise –41 (negative value), also penalise wrong units but allow kJ only)		
	(ii)	$\Delta G = \Delta H - T \Delta S$	1	
	(iii)	$\Delta H = T\Delta S \text{ or } \Delta S = \Delta H/T$ (penalise if contradiction)	1	
		$\Delta S = 41.1/373 = 0.110 \text{ kJ K}^{-1} (\text{mol}^{-1}) (\text{or } 110 (\text{J K}^{-1} (\text{mol}^{-1})) (allow 2 sig. figs.)$ (if use value given of 45, answer is 0.12 (or 120 to 121) (if ΔH is negative in (d) (i), allow negative answer) (if ΔH is negative in (d) (i), allow positive answer) (if ΔH is positive in (d) (i), penalise negative answer)	1	
		Correct units as above $(mol^{-1} not essential)$	1	[10]

6. (a) (i)

ONLY consider species involved in the step marked

(ii) Cycling clockwise about (*) CE if step missing

> $\Delta H_{a}Ba + 1^{st} IEBa + 2^{nd} IE Ba + 2\Delta H_{a}Cl + 2EACl + LE - \Delta H_{f}BaCl_{2} = 0$ (1) $+180 + 503 + 965 + 2 \times 122 + 2EA - 2056 + 859 = 0$ (1) EA = -695/2 = -(347 to 348) (1) 9 Ignore units *Calculation –1 for each error* Mark conseq. Notes: -695 scores (2) +(347 to 348) scores (2)-(286 to 287) scores (2) +(286 to 287) scores (1) -573 scores (1) +573 scores (0)

(b) $\Delta S = \Sigma S$ products $-\Sigma S$ reactants =(63+223)-124=162 (1) $\Delta G = \Delta H - T \Delta S \qquad \text{or}$ $\Delta H = T\Delta S$ or $T = \Delta H/\Delta S$ (1) or used correctly $\Delta H = 859 \times 10^3$ (1) = T × 162 T = (5 300 to 5304) K (1) 4 Penalise if units $^{\circ}C$ -1 for each error + mark conseq. [13] 7. Standard enthalpy change: $\Delta H_{R} = \Sigma \Delta H_{f}$ products $-\Sigma \Delta H_{f}$ (a) (i) reactants (1) $\Delta H_R = (-804 - 394) - (-940)$ (1) N.B: If answer wrong statement worth 2 = -258 (kJ mol⁻¹; ignore units completely) (1) Allow +258 (2) marks Standard entropy change: $\Sigma \Delta S$ products – $\Sigma \Delta S$ reactants (1) $\Delta S = (252 + 214) - (49.9 + 5.7 + [2 \times 223])$ (1) N.B: If answer wrong statement worth 2 = -35.6 (kJ mol⁻¹; ignore units completely) (1) Allow +35.6 (2) marks Mark -36 AE minus one Allow max one for +187 $T = \frac{\Delta H}{\Delta S}$ or $T = \frac{\Delta H \text{ value from above}}{\Delta S \text{ value from above}}$ (1) (ii) Penalise wrong sign $T = \frac{-258 \times 1000}{-35.6} = 7245 \text{ to } 7250 \text{ (1)}$ Ignore letter after value Ignore ≥ even if wrong way around Mark answer conseq to ΔH and ΔS values from above If negative temperature given max 2* If °C used incorrectly max 2* * But only penalise one of these errors

[9]

8. *Standard enthalpy change*: $\Delta H_R = \Delta \Sigma H_f(\text{products}) - \Delta \Sigma H_f(\text{reactants})$ (1) (a) (i) or cycle $\Delta H_{R} = ([2 \times 0] + [3 \times -393.5]) - (-824.2 + [3 \times -110.5]) (1)$ $= -24.8 (kJ mol^{-1})$ (1) Allow + 24.8 max one Standard entropy change: $\Delta S = \Sigma S$ (products) - ΣS (reactants) (1) $\Delta S = ([2 \times 27.3] + [3 \times 213.6]) - (87.4 + [3 \times 197.6]) (1)$ = (54.6 + 640.8) - (87.4 + 592.8) (1) $= 15.2 (JK^{-1}mol^{-1})$ (1) Allow -15.2 max one $\Delta G = \Delta H - T\Delta S$ (1) (ii) Δ H negative and -T Δ S is negative (or Δ S positive or or correct calc) (1) 9 Hence ΔG is always negative (or feasible when $\Delta G \le 0$) (1) (b) $\Delta G = O = \Delta H - T\Delta S$ Hence $\Delta H = T\Delta S$ (1) $T = \Delta H / \Delta S = 492.7 \times 1000 / 542.6$ (1) = 908 K (1) penalise missing 1000 by one mark 3 (c) $\Delta G(b) = \Delta G(a)$ $(492.7 \times 10^3 - T \times 542.6) = (-24.8 \times 10^3 - T \times 15.2)$ (1) $517.5 \times 10^3 = 527.4 \text{ T}$ (1) T = 981.2 K(1)Allow 980 - 982 Penalise missing 1000 by one mark 3 9. $\Delta Ha = \sum \Delta H_f$ products $-\sum \Delta H_f$ reactants or (a) $= \Delta H_f CO_2 - (\Delta H_f CH_4 + 2 \Delta H_f H_2 O) (1)$ $= -393.5 + (74.8 + [2 \times 241.8])$ (1) $= +164.9 \text{ kJ mol}^{-1}$ (1) 3 The number of moles of gas increases from 3 to 5 (1) (b) (i) More moles gas gives more disorder (1) = Σ S prducts – Σ S reactants (1) (ii) ΔS $= (213.6 + [4 \times 130.6]) - (186.2 + [2 \times 188.7])$ (1) $=+172.4 \text{ JK}^{-1} \text{ mol}^{-1}$ (1) 5

[15]

(c) (i)
$$\Delta G = \Delta H - T\Delta S \text{ or } \Delta H = T\Delta S (1)$$

T = 164.9 × 1000/172.4 (1)
= 956.5 K (1)
Marked consequentially
(ii) Above this temperature (1)
this reaction is feasible or spontaneous (1) 5
[13]
10. (a) ΔH^{\oplus} $\Delta H^{\oplus} = \Sigma \Delta H^{\oplus} (\text{products}) - \Sigma \Delta H^{\oplus} (\text{reactants}) (1)$
= -201 + 110
= -91 kJmol⁻¹ (1)
 ΔS^{\oplus} $\Delta S^{\oplus} = \Sigma S^{\oplus} (\text{products}) - \Sigma S^{\oplus} (\text{reactants}) (1)$
= +240 - 2 × 131 - 198
= -220 JK⁻¹ mol⁻¹ (1) 4
(b) Feasible reaction One for which $\Delta G \le O(1)$
Temperature $\Delta G = \Delta H - T\Delta S(1)$
For $\Delta G = O, T = \Delta H/\Delta S = -91 \times 1000/(-220)$
= 414 K (1) 3
[7]
11. (a) $\Delta H^{\oplus} = \Sigma \Delta H^{\oplus} (\text{products}) - \Sigma \Delta H^{\oplus} (\text{reactants}) (1)$
= 2 × (-396) - 2 × (-297)
= -198 kJ mol⁻¹ (1)

(1)

$$\Delta S^{•} = \Sigma S^{•} \text{ (products)} - \Sigma S^{•} \text{ (reactants)}$$

= 2 × (257) - 204 - 2 × (248)
= -186 JK⁻¹ mol⁻¹ (1)
$$\Delta G^{•} = \Delta H^{•} - T\Delta S^{•} (1)$$

= -198 - 298 (-186/1000) (1)
= -143 kJ mol⁻¹ (1)

(b) One for which $\Delta G \le O$ (1)

$$T = \frac{\Delta H}{\Delta S} \text{ when } \Delta G = O (1)$$

= $\frac{-198 \times 1000}{-186} = 1100 \text{K} (1)$ 3

[10]

12.

(i)

fewer moles of gas (1)

more 'order' in system (1) dependent on idea of fewer moles for first mark

(ii)
$$25 \circ C = 298 \text{ K}$$
 (1)

$$\Delta S = \frac{-188}{1000} \text{ or } (\Delta H \times 1000) \text{ (1)}$$

mark is for ensuring ΔH or ΔS are both expressed in terms of J or kJ

$$\Delta G = -196 - 298(-188 \times 10^{-3})$$

= -140 kJ mol⁻¹ or -139976 J mol⁻¹ (1)

ignore sig. figs

sign and unit must be correct in final answer

 ΔG –ve∴reaction feasible (1)

[6]

2

13. (a) (i) <u>Steps</u>

Sublimation/atomisation enthalpy or $\Delta H_{\text{fus}} + \Delta H_{\text{vap}} \operatorname{Ca}(s) \rightarrow \operatorname{Ca}(g)(1)$ First ionisation enthalpy of calcium $\operatorname{Ca}(g) \rightarrow \operatorname{Ca}^+(g) + e^-$ (1) Second ionisation enthalpy of calcium $\operatorname{Ca}^+(g) \rightarrow \operatorname{Ca}^{2+}(g) + e^-$ (1) Dissociation enthalpy/bond energy/2 × ΔH_a chlorine $\operatorname{Cl}_2(g) \rightarrow 2\operatorname{Cl}(g)$ (1) 2 × First electron affinity of chlorine 2Cl(g) + 2e^- $\rightarrow 2\operatorname{Cl}^-(g)$ (1) Lattice dissociation (or formation) enthalpy $\operatorname{CaCl}_2(s) \rightarrow \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^-(g)$ (1) Enthalpy of formation of calcium chloride $\operatorname{Ca}(s) + \operatorname{Cl}_2(g) \rightarrow \operatorname{CaCl}_2(g)$ (1)

(ii) 2nd IE needed when CaCl₂ formed or only 1st IE for CaCl (1) BE of Cl₂ needed when CaCl₂ formed but BE/2 for CaCl (or equivalent) (1) 2 × electron affinity when CaCl2 formed but 1 × EA for CaCl (1) LE of CaCl₂ greater (or different) than LE CaCl (1)

4

7

(b) (i) $CaCl_2(s)$ $CaCl_2(s)$ $CaCl_2(aq) + 2Cl^-(aq)$

+LE + $(\Delta H_{hyd}Ca^{2+})$ + 2 $(\Delta H_{hyd}Cl^{-})$ - $\Delta H_{soln}CaCl_2$ = CaCl₂ = 0 or correct cycle (1)

$$\Delta H_{\rm soln} \, \rm CaCl2 = 2255 - 1650 - 768 \ \ (1)$$

$$= -163 \text{ kJ mol}^{-1}$$
 (1) 3

(ii) Marked consequentially to answer in (c)(i) Solubility decreases (1) Enthalpy of solution negative or exothermic (1) Equilibrium displaced as predicted by Le Chatelier (1)
3

[17]

Cation: $Mg^+(g) + Cl(g) + e^ \Delta H_{\scriptscriptstyle 1}^{\rm t}$) (ionisation (*Electron addition* ΔH_{ea}^{t}) Gaseous atoms: Mg(g) + Cl(g) 4 1 Anion: $Mg^+(g) + Cl^-(g)$ 6 steps -1 for each error (Atomisation $\Delta H_{sub}^{t} + \frac{1}{2}\Delta H_{diss}^{t}$) $Mg(s) + \frac{1}{2}Cl_2(g)$ **Elements:** (Lattice formation $-\Delta H_{\rm L}^{\rm t}$) 1 (Decomposition $-\Delta H_{\mathrm{f}}^{\mathrm{t}}$) MgCl(s) Solid salt:

0	$= -\Delta H \mathbf{f} + \Delta H \mathbf{sub} +$	$+\Delta H \overset{\Theta}{\mathbf{diss}} + \Delta H \overset{\Theta}{\mathbf{f}} + \Delta H \overset{\Theta}{\mathbf{e}a} + \Delta H \overset{\Theta}{\mathbf{f}}$		
$\Delta H \mathbf{\hat{f}}$	$= \Delta H_{sub}^{\Theta} + \Delta H_{diss}^{\Theta} + A$			
$\Delta H \mathbf{\hat{f}}$	= + 146 + 121 + 736	- 364 - 753		
$\Delta H \mathbf{\hat{f}}$	$= -114 \text{ kJ mol}^{-1}$ (3)	[-1 for each error]	2	
$\Delta H^{\ominus} = \Delta H_{\mathbf{f}}^{\ominus}$	$(MgCl_2) - \Delta H \mathbf{f}$ (Mg	$gCl) = -653 - 2(-114) = -425 \text{ kJ mol}^{-1}$	1	
$\Delta S^{\textcircled{a}} \approx 0$ since 2 mol solid \rightarrow 2 mol solid				
if $\Delta S^{\oplus} = 0$, then	$\Delta \mathbf{G}^{\mathbf{\Phi}} = \Delta \mathbf{H}^{\mathbf{\Phi}}$		1	
So ΔG^{\bigoplus} for the real	action is < 0 (at all <i>T</i>)–	hence MgCl ₂ is always favoured over MgCl	1	
				[10]

15

(a) Heat (energy)/ internal energy change (not energy change) (1) Measured at constant pressure (1)

(b)

8

2

Notes:- Ignore electrons in cycle Penalise missing labels by max 2 Penalise missing state symbols in 'active step' by max 2 Penalise incorrect chemistry every time

Allow steps written horizontally

Calculation:

```
\Delta H_{a}Mg + 1^{st} IE Mg + 2^{nd} IE Mg + \Delta H_{a} O + 1^{st} EA O + 2^{nd} EA O + LE Form -MgO \Delta H_{f}MgO = 0 (1)
Hence; 148 + 738 + 1451 + 249 - 141 + 798 + LE + 602 = 0 (1)
(NB This scores 2)
LE formation MgO = -3845 (kJ mol<sup>-1</sup>) (1)
(Allow + 3845 Max 2)
```

For the reaction $MgCl_2(s) + \frac{1}{2}Cl_2(g) \rightarrow MgCl_3(s)$ (c) $\Delta H_{\rm r} = \Delta H_{\rm f} M g C l_3 - \Delta H_{\rm f} M g C l_2$ $= +3904 - (-653) = 4557 (kJ mol^{-1})$ (1) ΔS is negative/ entropy decreases (as order increases) (1) $\Delta G = \Delta H - T \Delta S$ (1) ΔG must (always) be positive (since ΔH_r and $-T\Delta S$ are both positive) (1) Reaction never/not feasible (or equivalent) (1) 5 [15] $\Delta S = \Sigma S$ products – ΣS reactants 1 $\Delta S = (259 + 187) - (201 + 161)$ 1 $\Delta S = 84 (JK^{-1} mol^{-1})$ (Ignore units) 1 Allow – 84 to score (1) mark

16.

 $\Delta G = \Delta H - T \Delta S$

 $= -21.6 - 298 \times 84/1000$

 $= -46.6 \text{ kJ mol}^{-1} \text{ or} - 46600 \text{ J mol}^{-1}$

Allow (2) for -46.6 without units

(Mark ΔG consequentially to incorrect ΔS) (e.g. $\Delta S = -84$ gives $\Delta G = +3.4$ kJ mo Γ^{-1})

[6]

1

1

17. (a) Reaction 1

(b)

$\Delta H = \Sigma \Delta H_{\rm f} {\rm products} - \Sigma \Delta H_{\rm f} {\rm reactants} (1)$	
$= (\Delta H_{\rm f} \rm CO) - (\Delta H_{\rm f} \rm CH_4 + \Delta H_{\rm f} \rm H_2 \rm O)$	
= $(-110.5) - (-74.8 - 241.8) = +206.1 \text{ (kJ mol}^{-1})$ (1)	
$\Delta S = \Sigma S \text{ products} - \Sigma S \text{ reactants} (1)$	
= $(197.6 + [3 \times 130.6]) - (186.2 + 188.7) = 214.5 (J K^{-1} mol^{-1})$ (1)	
$\Delta G = \Delta H - T \Delta S $ (1)	
$0 = +\ 206.1 - T \times 214.5/1000 \textbf{(1)}$	
$T = 206.1 \times 1000/214.5 = 960.8 \text{ (K)}$ (1)	
(allow 961)	
Penalise incorrect units in calculation of temperature by 2 marks	
Mark T consequentially	
Reaction 2	
$\Delta H = 2\Delta H_{\rm f} \rm NH_3 = -92.2 \ (kJ \ mol^{-1})$ (1)	
$\Delta S = (2 \times 192.3) - (191.6 + [3 \times 130.6]) = -198.8 \text{ (J K}^{-1} \text{mol}^{-1}\text{) (1)}$	
$\Delta G = 0 = -92.2 + T \times 198.8/1000$	
$T = 92.2 \times 1000/198.8 = 463.8$ (k) (1)	
(allow 464)	
Mark T consequentially	
Note:- Allow first calculation max 7 and second calculation max 3	10
Reaction 1 at higher temperatures	
equilibrium yield increased/forward reaction favoured as reaction endothermic (1)	
rate of reaction increased (1)	
a compromise temperature used based on high cost of high temperature (1)	
Reaction 2 at higher temperatures	
equilibrium yield reduced/backward reaction favoured as reaction exothermic (1)	
rate of reaction increased (1)	
a compromise temperature used based on overall yield (1)	
Mark consequentially to ΔH values in (a)	max 5

13

[15]

18. (a) Spontaneous when $\Delta G < 0$ or $\Delta G = 0$ (1) $\Delta G = \Delta H - T \Delta S (1)$ Calculation of ΔH ; $\Delta H_{\text{reaction}} = \Sigma \Delta H_{\text{Products}} - \Sigma \Delta H_{\text{Reactants}}$ (1) $= (2 \times -110.5) - (-3935) = +172.5$ Allow 172 - 173 kJ mol⁻¹(1) Calculation of ΔS ; $\Delta S_{\text{reaction}} = \Sigma \Delta S_{\text{Products}} - \Sigma S_{\text{Reactants}}$ (1) $= (2 \times 197.6) - (5.7 + 213.6) = 175.9 \text{ J mol}^{-1} \text{ K}^{-1}(1)$ Calculation of $T = \Delta G = 172.5 - T \times 175.9/1000 = 0$ (1) $T \times 175.9/1000 = 172.5$ $T = 172.5 \times 1000/175.9 = 980.7 \text{ K}$ (1) 8 (b) Calculation of $\Delta H_{Vaporisation}$; 3675 J vaporise 1.50 g water $3675 \times 18/1.50$ vaporise 1.00 mole water $= 44.1 \text{ kJ mol}^{-1}$ (1) $\Delta G = 0 = 44.1 - 373 \times \Delta S / 1000 \text{ or } \Delta S = \Delta H / T \text{ (1)}$ Calculation of ΔS ; $\Delta S = 44.1 \times 1000/373 = 118.2 \text{ J mol}^{-1} \text{ K}^{-1}$ (1) 3 [11]

19. (a)
$$\Delta H^{\Theta} = \Sigma \Delta H^{\Theta} (\text{products}) - \Delta H^{\Theta} (\text{reactants}) (1)$$

 $= (-110.5) - (-271.9) = +161.4 [\text{Allow } 161 - 161.5] \text{ kJ mol}^{-1} (1)$
 $\Delta S^{\Theta} = \Sigma S^{\Theta} (\text{products}) - \Sigma S^{\Theta} (\text{reactants}) (1)$
 $= (27.3 + 197.6) - (58.5 + 5.7) = +160.7$
[Allow $160.6 - 161$] J mol⁻¹ K⁻¹(1)
 $\Delta G = \Delta H - T\Delta S [\text{Stated or correctly used]} (1)$
 $\Delta G = +161.4 - 450 \times 160.7/1000 (1)$
 $= + 89.1 [\text{Allow } 88.5 - 89.1] \text{ kJ mol}^{-1}. (1)$
 $\Delta H^{\Theta} = (-393.5) - (-271.9 - 110.5) = -11.1 \text{ kJ mol}^{-1}. (1)$
 $\Delta S^{\Theta} = (213.6 + 27.3) - (58.5 + 197.6) = -15.2 \text{ J mol}^{-1} \text{ K}^{-1}. (1)$
 $\Delta G = -11.1 + 450 \times 15.2/1000 = -4.26 [\text{Allow}-4.3] \text{ kJ mol}^{-1}. (1)$ 10
(b) Feasible when $\Delta G \le 0$ or ΔG is negative (1)
Process 1 is more feasible as temperature is increased (1)
Because ΔS is positive or $-T\Delta S$ is positive or T ΔS is negative (1)
Process 2 is less feasible as temperature is increased (1)
Because ΔS is negative or $-T\Delta S$ is positive or T ΔS is negative (1)
(1) Because ΔS is negative or $-T\Delta S$ is positive or T ΔS is negative (1)
(2) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(3) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(4) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(5) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(5) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(6) Because ΔS is negative or $-T\Delta S$ is positive or T ΔS is negative (1)
(7) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(7) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(7) Because ΔS is negative or $-T\Delta S$ is negative or T ΔS is negative (1)
(7) Because ΔS is negative or $-T\Delta S$ is negative or $T\Delta S$ is negative (1)